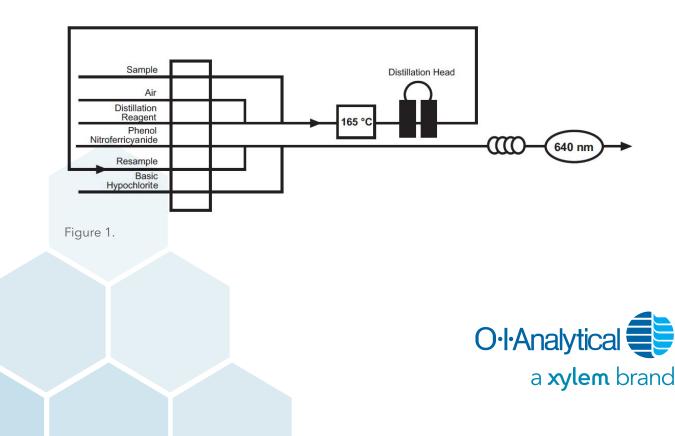


# Volatile Base in Tobacco by Online Distillation and Segmented Flow Analysis (SFA)

SEGMENTED FLOW ANALYSIS (SFA) SERIES


Cartridge Part Number: 331653CT Channel Part Number: 331652

## **Scope and Application**

This method is used for the determination of volatile base in tobacco leaf samples. The Method Detection Limit (MDL) is 0.003% volatile base as ammonia (NH3). The applicable range is 0.02 - 0.40% volatile base as NH<sub>3</sub>. The range extends to analyze higher concentrations using sample dilution.

Method Performance

| Range                        | 0.02 - 0.40%                                                                    |  |  |
|------------------------------|---------------------------------------------------------------------------------|--|--|
| Rate                         | 24 samples/hour                                                                 |  |  |
| Precision                    | $\leq$ 5.5 % RSD at 0.04% volatile base<br>$\leq$ 3 % RSD at 0.2% volatile base |  |  |
| Method Detection Limit (MDL) | 0.003 %                                                                         |  |  |



**Reagents and Calibrants** 

| Chemical Name                           | CAS #      | Chemical Formula                                                                    | Part Number |
|-----------------------------------------|------------|-------------------------------------------------------------------------------------|-------------|
| Ammonium molybdate tetrahydrate         | 12054-85-2 | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> • 4H <sub>2</sub> O |             |
| Potassium antimonyl tartrate trihydrate | 28300-74-5 | K(SbO)C <sub>4</sub> H <sub>4</sub> O <sub>6</sub> • ½H <sub>2</sub> O              |             |
| Ascorbic acid                           | 50-81-7    | C <sub>6</sub> H <sub>8</sub> O <sub>6</sub>                                        |             |
| DOWFAX® 2A1                             | 12626-49-2 |                                                                                     | 328852      |
| Hydrochloric acid, concentrated         | 7647-01-0  | HCI                                                                                 |             |
| Phenylphosphate disodium salt dihydrate | 66788-08-3 | $C_6H_5OP(O)(ONa)_2 \bullet 2H_2O$                                                  |             |
| Potassium Persulfate                    | 7727-21-1  | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                        |             |
| Potassium phosphate monobasic           | 7778-77-0  | KH <sub>2</sub> PO <sub>4</sub>                                                     |             |
| Sodium hydroxide                        | 1310-73-2  | NaOH                                                                                |             |
| Sodium pyrophosphate decahydrate        | 13472-36-1 | $Na_4O_7P_2 \bullet 10H_2O$                                                         |             |
| Sodium tripolyphosphate                 | 7758-29-4  | Na <sub>5</sub> O <sub>10</sub> P <sub>3</sub>                                      |             |
| Sulfuric acid, concentrated             | 7664-93-9  | $H_2SO_4$                                                                           |             |
| Trimethylphosphate                      | 512-56-1   | (CH <sub>3</sub> O) <sub>3</sub> P(O)                                               |             |
| Water, deionized, ASTM Type I or II     |            | H <sub>2</sub> O                                                                    |             |

## **Summary of Method**

### Method

- Treat tobacco leaf samples with 0.12 M hydrochloric acid to extract ammonia compounds. Distill at 165 °C and a buffered pH of 9.5. At pH 9.5 all ammonium ions quantitatively convert to NH3. The amount of NH3 obtained through distillation represents the volatile base.
- Ammonia reacts with alkaline phenol and hypochlorite to form indophenol blue in an amount that is proportional to the NH<sub>3</sub> concentration. Sodium nitroferricyanide intensifies the blue color. Measure the absorbance at 640 nm. <sup>1,2</sup>
- Assure the analysis quality through reproducible calibration and testing of the segmented flow analysis (SFA) system.
- A general flow diagram of the SFA system is shown in Figure 1.

### Interferences

- Eliminate precipitation in the distillation tubing by adding ethylenediaminetetraacetic acid (EDTA).
- Filter turbid samples prior to analysis.
- Samples with background absorbance at the analytical wavelength may interfere. <sup>2,3</sup>

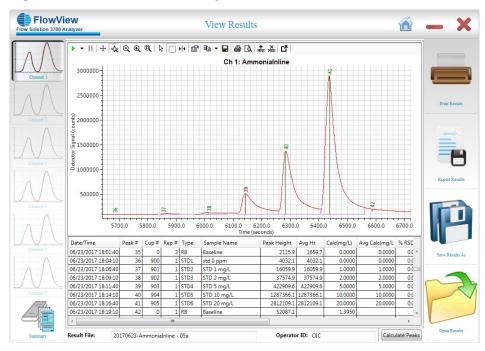
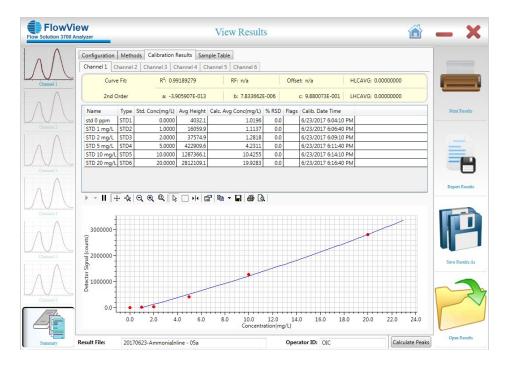




Figure 2. Volatile Base in Tobacco by Online Distillation and SFA Calibration Series

Figure 3. Volatile Base in Tobacco by Online Distillation and SFA Calibration Curve and Statistics



OI Analytical, a Xylem brand PO Box 9010 College Station, TX 77842-9010 +1.979.690.1711
xylem-lab@xyleminc.com
oico.com



Flow SolutionTM and FlowViewTM are trademarks of OI Analytical. OI Analytical® is registered trademark of Xylem Inc. or one of its subsidiaries.

© 2020 Xylem, Inc. 4414-01 0221 Method Part Number 331654

